IV. Torus decompositions & Special 3-Manifolds

A. Torus Decomposition

a compact 3-manifold Mis a Seifert Fibered Space (SFS) if Mis a union of circles (called fibers) in such a way that every fiber has a nord which is a union of fibers and is fiber preserving homeo. to a fibered solid torus

 $V_{(p,q)} = D^2 \times L_{p,q}$ is a (p,q)-fibered solid torus

- fibers are: [{x}xI] u[{h} (x)}xI] u ... u[{h (x)}xI] x = 0 are <u>ordinary fibers</u>
 - and: [{o}xI] for x=0 is the <u>exceptional fiber</u> (if p>1) (o.k.a. <u>singular fibers</u>)

exercise: M has finitely many exceptional fibers

V/collopse each fiber $\cong D^2$ $q uotient map \quad p: V \to D^2$ $p = \int P =$

so it M is a SFS can get a quotient map $\rho: \mathcal{M} \longrightarrow \mathcal{B}$ B is called the base surface

o surface Z is a 3-manifold M is boundary parallel it it is isotopic rel 2 to a subsurface of 2M M is atoroidal it every incompressible torus in M is boundary parallel

a torus decomposition of M is a finite disjoint Union J of incompressible tori c int M st. (1) each component of M\7 is atoroidal or a Seifert fibered space, and (2) J is minimal with respect to (1)

<u>The 1 (Torus decomposition theorem or JSJ decomposition</u> <u>Jaco-Shalen 1977 and Johannson 1979)</u>: Every compact, ir reducible 3-manifold has a torus decomposition unique up to isotopy

Remark: Existence is somewhat similar to prime decoposition theorem (Th^m 11.4) and uses "normal surfaces" Uniquenent uses lots of properties of SFSs for a proof see Hatcher's notes on 3-mfds

Part of the Geometrization The (Penelman~2003) says if M is an irreducible, a toroidal 3-manifold that is not a Sectent fibered space and is either closed or has torus boundary, then the interior of M admits a hyperbolic structure

we say a 3-manifold is hyperbolic if it admits a complete Riemannian metric with all sectional curvatures = - 1 and of finite volume

Remark: 50 the Torus Hi - and geometrization imply you can decompose any 3-mtd into its prime pieces and then along incomp. tori, so that each piece is 1) a Seifert fibered space or 2) hyperbolic

so we more or less "know" 3-manifolds If we know SFSs and hyperbolic manifolds! We know a lot about these

B. <u>Seifert fibered spaces</u>

suppose M is a compact Seifert fibered space with $projection \quad p: M \rightarrow B$

to the base surface and singular fibers Ci, ..., Cn such that Ci has a ubbd $N_i = \rho^{-1}(D_i)$ with $N_i \cong (\rho_i, q_i)$ fibered forus

let
$$N_0 = nbbd$$
 of a regular fiber = $p'(D_0)$
let $M_0 = M - \bigcup_{n=0}^{n} N_i$ and $B_0 = B - \bigcup_{n=0}^{n} D_i$.
 $pl_{M_0}: M_0 \rightarrow B_0$ an $S' - bundle$

Co,... Cn correspond to 2Di di,... dm correspond to 2B

T((Bo) = free group gen by a, b, ..., ag, bg, c, ..., cn, d,, .- dm

(n) Bo non-orientable

TI, (Bo) = free group gen by a1,..., ag, C1, ... Cn, d1, ... dm

let $\alpha_{11} \dots \alpha_{k}$ be arcs properly embedded in B_{0} St. $B_{0} \setminus U \alpha_{i} = d u s h D$ k = 2g + m + n (n) $\pi^{-1}(x_1) = A_1 = annulus$ $Q = M_0 \setminus UA_i = 5^1 \times D^2$ $\pi_1(q) \cong \mathcal{Z}$ gen by h = [fiber]2Q=S'x2D > copies At of Ai Mo obtained from Q by identifying A, with A, Mo orientable => identification is by id xid: 5 x x, + -> 5 x x, except in case (n) for a, ... ag, then by reflection × reflection can assume 2 t to di in 2D so] a section $\sigma: \mathcal{B}_{o} \to \mathcal{M}_{o}$: can think of Bo C Mo

 $\begin{aligned}
\mathcal{T}_{I_{1}}(\mathcal{M}_{0}) &\cong \begin{cases} \mathcal{T}_{I}(\mathcal{B}_{0}) \times \mathcal{H}_{h} \\ & \langle a_{1,\dots}a_{g_{1}}d_{1}\dots d_{m_{j}}c_{1,\dots}c_{n,h} | [h,d_{i}] = I = [h,c_{i}] \\ & a_{1}^{-1}ha_{i} = h^{-1} \end{cases}$ (0)

$$\begin{aligned} &\mathcal{T}_{i}\left(\partial \mathcal{M}_{i}\right) \stackrel{\simeq}{=} \stackrel{\sim}{=} \stackrel{\sim}{=} \stackrel{\sim}{=} \begin{array}{c} gen \ by \ h \ and \ c_{i} \ \subset \partial \mathcal{B}_{o} \\ &also \ by \ \lambda_{i}, \mathcal{M}_{i} \quad in \ \partial \mathcal{M}_{i} \end{aligned}$$

$$&h = regular \ fiben = \lambda_{i}^{P_{i}} \mathcal{M}_{i}^{q_{i}} \\ &b = regular \ fiben = \lambda_{i}^{P_{i}} \mathcal{M}_{i}^{q_{i}} \\ &so \ c_{i} = \lambda_{i}^{r_{i}} \mathcal{M}_{i}^{s_{i}} \quad some \ r_{i}, s_{i} \ sf. \\ & r_{i}s_{i} - q_{i}r_{i} = 1 \\ ¬e: \ c_{i}^{P_{i}} h^{-r_{i}} = \lambda_{i}^{r_{i}P_{i}} \mathcal{M}_{i}^{s_{i}P_{i}} \quad \overline{\lambda}_{i}^{P_{i}r_{i}} \mathcal{M}_{i}^{-s_{i}r_{i}} \\ &= \mathcal{M}_{i} \\ ∧ \ \mathcal{M}_{i} = 1 \quad in \ \mathcal{T}_{i}(\mathcal{M}_{i}) \\ &recall \ \rho_{o} = l \ so \ set \ r_{o} = b \in \mathcal{Z} \\ &now: \ c_{o} = \left\{ \begin{array}{c} \mathcal{T}[q_{i}, b_{i}] \ \mathcal{T}d_{i}, \ \mathcal{T}c_{i} \quad (o) \\ \mathcal{T}[q_{i}^{c} \ \mathcal{T}d_{i}, \ \mathcal{T}c_{i} \quad (o) \end{array} \right. \end{aligned}$$

now can use Van Kampen to prove

$$\frac{\pi}{2}:$$
(0) $\pi_{i}(M) \cong \langle a_{i,b_{1},...,a_{g},b_{g},d_{1},...,d_{m},c_{i}...,c_{n},h |$

$$\begin{bmatrix} h, a_{i} \end{bmatrix} = [h, d_{i}] = [h, c_{i}] = 1$$

$$\begin{bmatrix} c_{i}^{P_{i}} = h^{P_{i}}, \pi[a_{i},b_{i}]\pi d_{i}\pi c_{i} = h^{b} \\ g_{i}^{2}0, m_{i}^{2}0, n_{i}^{2}0 \quad P_{i}^{i} \ge 2, b \in \mathbb{Z}$$

$$(n) \ \mathcal{U}_{1}(M) \cong \langle q_{1} - ... q_{g}, d_{1} - ... d_{m}, c_{1}, ..., c_{n}, h | a_{1}^{-1}hq_{1} = h^{-1}, [h, d_{1}] = [h, c_{2}] = 1, c_{1}^{p_{2}} = h^{r_{2}} \pi a_{1}^{2} \pi d_{1} \pi c_{1} = h^{b} \rangle g \ge 1, M \ge 0, n \ge 0, P_{1} \ge 2, b \in \mathbb{Z}$$

note: 1) Cyclic group
$$\langle h \rangle$$
 is normal in $\pi_i(M)$ and
central in (0) case
2) if $\partial M \neq \emptyset$ (re. $m \ge 1$) then can discard
 d_m and last relation
3) $\rho_{\star}: \pi_i(M) \rightarrow \pi_i(B)$ is onto
 $\pi_i(M) / h = 1, c_2 = 1 \rangle = \pi_i(B)$
4) recall $(r_1, \rho_1) = 1$ can arrange $0 < r_1 < \rho_1$ and then
 b is uniquely determined
With this theorem can show lots of things
for example

Th = 3: M a closed SFS $T_1 M = 1 \iff M \cong 5^3$

(of course, now, we know with Out SFS assumption, but proof much harder)

Proof:
$$\pi_{i}M=1 \Rightarrow \pi_{i}B=1 \Rightarrow B \equiv S^{2}$$

let $n = \#$ singular fibers
if $n \leq 2$, then $M = Union$ of 2 solid tori
energise: given this, $\pi_{i}M=1 \Rightarrow M \equiv S^{3}$
if $n \geq 3$, then
 $\pi_{i}M_{ins} = \langle c_{i_{1},...,c_{n}} | c_{i}^{h}=1, \frac{\pi}{4}c_{i}=1 \rangle$
 \downarrow quotient by $\langle c_{n_{1},...,c_{n}} \rangle$
 $\langle c_{i_{1}}c_{i_{2}} | c_{i}^{h}=c_{i}^{h}=c_{i}^{f}=1 \rangle$
this is called the triangle group $T(p_{i_{1}}p_{i_{2}}, p_{i_{3}}) = p_{i}\geq 2$
 $Claim: T(p_{i_{1}}p_{2}, p_{3}) \neq 1$ ($\bigotimes \Rightarrow n \leq 2$)
 $idea: \exists$ triangles with vertices $A_{i_{1}}A_{i_{2}}A_{i_{3}} \subset \left\{ \begin{array}{c} S^{2}\\ F^{2}\\ H^{2}\\ H^{$

let
$$f_{ij} = reflection$$
 in $A_{1}A_{j}$
 $\delta_{1} = f_{13}f_{12} = rotation about A_{1} through \frac{2\pi}{P_{1}}$
 $\delta_{2} = f_{21}f_{23} = \frac{1}{P_{2}} \frac{1}{A_{2}} \frac{1}{P_{2}} \frac{2\pi}{P_{2}}$
 $\delta_{3} = \delta_{1} \circ \delta_{2} = f_{13}f_{23} \frac{1}{P_{3}} \frac{1}{P_{3}} \frac{1}{P_{3}} \frac{2\pi}{P_{3}}$
 $\Gamma(p_{1}, p_{2}, p_{3}) = subgroup of isometries$
of $\begin{cases} S^{2} \\ E^{2} \\ H^{2} \end{cases}$ generated by δ_{1}, δ_{2}
so $\Gamma(p_{1}, p_{2}, p_{3}) \neq 1$

exercise: this follows from lemma 4: $M \ a \ SFS$, then $M \cong S' \times D^2 \iff B \cong D^2$ and $n \le 1$

5) M closed SFS then either i) $\pi_1(M)$ finite ($\Longrightarrow \tilde{M} \stackrel{\simeq}{=} S^3$) c) $\pi_1(M) \supset \mathbb{Z} \times \mathbb{Z}$ ($\boxdot \tilde{M} \stackrel{\simeq}{=} \mathbb{R}^3$) 3) $M \stackrel{\simeq}{=} S' \times S^2$ or $\mathbb{R} P^3 \# \mathbb{R} P^3$ ($\oiint \tilde{M} \stackrel{\simeq}{=} S^2 \times \mathbb{R}$)

for last result we need

 $\frac{T_{H}^{m} 5}{\tilde{M} \cong 5^{2} \times R} \iff M \cong 5^{2} \times 5^{1} \text{ or } RP^{3} \# RP^{3}$

Proof: (=) $\tilde{M} = 5^2 \times R$ so $T_2(M) \cong T_2(\tilde{M}) \neq 0$ Sphere $T_{h} \stackrel{m}{=} \Rightarrow \exists essential 2-sphere <math>5 \in M$ (ase 1: 5 is non-separating then $M \cong 5^2 \times 5' \# M'$ ($T_{h} \stackrel{m}{=} \mathbb{I}.1 + Remark$)

let Σ be connect sum sphere lift Σ to $\widetilde{Z} \subset \widetilde{M} \cong 5^2 \times \mathbb{R} = \mathbb{R}^3 \cdot \{(0,0,0)\}$ $\widetilde{\Sigma} = \widetilde{B}$, $\widetilde{B} = 3$ -ball in \mathbb{R}^3 <u>Claim</u>: $\widetilde{B} \subset \mathbb{R}^3 - \{(0,0,0)\}$

50ppose (0,0.0) € B let 3 be a lift of 5 to M note 3 and 2=23 both embedded non null-homotopic spheres : Sazin M and so Saz \$ 5 non-separating, I separating erencise: pla: B = p(B) is a homeo. thus p(B)=B is an embedded ball with DB=Z : $M' = 5^3$ and $M \stackrel{n}{=} 5' \times 5^2$ <u>Case 2</u>: 5 separating MS M, # M, $\mathcal{T}_{i}(M) = A * B$ Snot $2 * \Rightarrow A = \mathcal{T}_{i}(M_{i}) \neq 1$ $B = \pi(M_n) \neq 1$ recall (h) A TT, (M)

 $\frac{lemma6}{a \text{ free product } A * B \quad (A \neq 1 \neq B)}{a \text{ free product } A * B \quad (A \neq 1 \neq B)}{a \text{ free product } A \neq B \quad (A \neq 1 \neq B)}{a \text{ free product } A \neq B \quad (A \neq 1 \neq B)}{a \text{ free product } A \neq B \quad (A \neq 1 \neq B)}{a \text{ free product } A \neq B \quad (A \neq 1 \neq B)}{a \text{ free product } A \quad (A \neq 1 \neq B)}{a \text{ free product } A \neq B \quad (A \neq 1 \neq B)}{a \text{ free product } A \quad (A \neq 1 \neq B)}{a \text{ fre$

we prove this later

 $: T_{i}(M) \cong \mathbb{Z}_{/_{2}} * \mathbb{Z}_{/_{2}}$

Center $(\frac{2}{2} * \frac{2}{2}) = 1 \implies M$ is a SFS of case (n) the "Kurosh subgroup th"" \implies any abelian subgroup of $\frac{2}{2} * \frac{2}{2}$ is either $\frac{2}{2}$ or conjugate into a factor (see my undergood alg. top. notes)

 $\therefore \mathbb{Z}/_{2} * \mathbb{Z}/_{2} \xrightarrow{\mathbb{Z}} \mathbb{Z} \times \mathbb{Z} \text{ and so } \underline{no} \text{ in comp. tori}$ 50 fact 4) above \Rightarrow we are in case (n) g=1and $n \leq 1$

if n=1: singular fiber of multiplicity p So $\pi_{I}(M)/=\langle q,c:c^{P}=1,a^{2}c=1\rangle$ $\stackrel{\simeq}{=} \frac{\mathbb{Z}_{/2p}}{\mathbb{Z}_{/2}}$ $: p=1 \quad \text{since} \quad \mathbb{Z}_{/2} * \frac{\mathbb{Z}_{/2}}{\mathbb{Z}_{/2}} \xrightarrow{\cong} \mathbb{Z}_{/2p} \xrightarrow{\cong} p=1$ so fiber not singular! & $\pi_{i}(M) \stackrel{\sim}{=} \left\langle a, h : a^{-i}ha = h^{-i}, a^{2} = h^{6} \right\rangle$ it n=0: b=0; a² is central so a²=1 since Elz * Elz has trivial center thus $\pi(M) \cong \langle a, h : a^{-1}ha = h^{2}, a^{2} = h^{2} = 1 \rangle$ ≥ D_b a ditredal group!

X The (M) infinite, Dy finite

$$\frac{40 \text{ b}=0}{60 \text{ b}=0}; \quad \text{so } M \text{ is an } 5'-\text{bundle over } \mathbb{R}P^2$$

and b was the obstruction to a section
$$\therefore \quad \exists \sigma: \mathbb{R}P^2 \longrightarrow M \text{ and we think of}$$
$$\mathbb{R}P^2 \subset M \text{ via } \sigma(\mathbb{R}P^2)$$

Now $N(\mathbb{R}P^2) \subset M \text{ is a twosted } I-\text{bundle}$
over $\mathbb{R}P^2 \text{ coll } i \neq P$

Claim:
$$P \cong \mathbb{R}P^3 \setminus \mathbb{B}^3$$

indeed $\mathbb{R}P^3 = \frac{5^3}{\text{ontipodes}}$

 $P^{-1}(B^{3}) = S^{2} \times I$ $RP^{3} \setminus B^{3} \cong P^{-1}(B^{3}) \cong S^{2} \times I$ $I \text{ bundle over } RP^{2}$ since orientable must be P. Now $M \setminus N(RP^{2})$ also I-bundle over RP^{2} $\therefore also P$.

$$50 \ M = Pu_{3} \ P \equiv RP^{3} \# RP^{3}$$
(E) Clear

Broof of lemma 6:

(E) $Z_{2}^{\prime} * Z_{2}^{\prime} \equiv \langle a, b | a^{2} = b^{2} = 1 \rangle$

 $\equiv \langle a, c : a^{2} = ; acq = c^{-1} \rangle = D_{a}$

 $prove a b = a^{2} = b^{2} = b^{2} = b^{2}$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $group I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow Z \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow D_{a} \Rightarrow D_{a} \Rightarrow Z_{2}^{\prime} = 3I$

 $I \Rightarrow D_{a} \Rightarrow$

$$\therefore n=\pm 1 \text{ and } a=a_{1}$$
if $a=a_{1}$, then
$$b_{1} - a_{m}b_{m} a = (a_{1}b_{1} - a_{m}b_{m})^{\pm 1}$$
so $n=-1$ $a=a_{1}^{-1}=a_{1} \Rightarrow a_{1}^{2}=1$
since a was any $a\pm 1$ in A and
 a_{1} fixed, $A = \frac{2}{2}$
similarly $B = \frac{2}{2}$

exercise: Check other cases
$$h = q, b, \dots, a_m \dots$$

7) Seifert fibered the " (Mess, Tukai, Gaboi, Casson-Jungreis): If Mirreducible and Ti (M) has an infinite cyclic normal subgroup, then M is a SFS

We finish our discussion of SFS with a very useful result 1h=7:

M an ineducible SFS I CM an incompressible, 2-incompressible, orietable surface Then I can be isotoped to be either vertical (= a union of regular fibers) (so a torus or annulus) or <u>horizontal</u> (= transverse to all fibers)

let Σ be a surface with $\partial \Sigma \neq \emptyset$, properly embedded in a 3-manifold M given a disk $D \subset M$ such that i) $\partial D = \alpha \cup \beta$, α, β arcs $\alpha \cap \beta = \partial \alpha = \partial \beta$ 2) $D \cap \Sigma = \alpha$ and $D \cap \partial M = \beta$ on can do surgery of I along D to get

 $\Sigma^{*} = \left(\Sigma - (\varkappa \times I)\right) \cup \left(D^{2} \times \partial I\right)$

if a doesn't separate Z into 2 components one of which is a disk, then D is a <u>boundary</u> <u>compressing disk for Z</u> and Z is <u>boundary</u> <u>Compressible</u>

if I is not boundary compressible and no component is a disk, then it is boundary incompressible

Proof of Th=7: let C = U Ci where G. Cn are the exceptional fibers and Co a regular fiber 150top I 50 CAI and minimize Inc Z NN(c) = I meridional dishs let Mo=M\N(C) $Z_o = Z \cap \mathcal{M}_o$ exercise: To is incompressible and 2-micomp. in Mo restrict p:M->B to p:M,->B to get an 5'-bundle over $B_{o}(\partial B_{o} \neq \varphi)$ let di be arcs in Bo st. Bol Uda = disk D $A_1 = p^{-1}(\alpha_1)$ annuli in M_0

Isotop Σ_0 so $\Sigma_0 \overline{M}A$ and $\overline{M} \overline{M} \overline{M} \overline{L} \in \Sigma_0 A$ Set $M_1 = M_0 \setminus UA_i$ note $M_1 = D^2 \times S'$ and each A_i gives $A_1^{\dagger}, A_i^{-} \subset \partial M_i$ set $\Sigma_1 = \Sigma_0 \setminus UA_i$

exercise: 1) each component of Z, MA[±] is horizontal or vertical

C Hyperbolic Manifolds

recall a manifold M is hyperbolic if it admits a complete Riemannian metric with sectional curvature -1 and finite volume (can relax complete and finite volume, but we want) A lot is known about hyperbolic manifolds, we could do the whole course on them! But here we just mention a few facts

Mostow-Prasad rigidity theorem 1968, 1973:

let M, N be (complete, finite volume) hyperbolic manifolds of dimension ≥ 3. If f: M→ N is a homotopy equivalence then f is homotopic to an isometry!

Remark: This says a geometric invariant of a hyperbolic manifold is also a topological invariant! e.g. if two hyperbolic manifolds (of dui = 3) have different volumes then they are <u>not</u> homeomorphic

Suppose M is a 3-manifold with n torus boundary components (and no others) we say M is hyperbolic if the interior of M has a complete, finite volume metric with sectional curvature -1

fix a basis for the homology of each boundary component of M and let $M(r_1, ..., r_n)$ be the Dehn filling of M with slopes $r_1, ..., r_n$ Thurston's hyperbolic Dehn surgery theorem, 1979:

There are a finite set of slopes \mathcal{E} on $\partial \mathcal{M}$ such that $\mathcal{M}(r_1, ..., r_n)$ has a hyperbolic structure if $r_1 \notin \mathcal{E}$ for all i

Moreover, for a larger set $\mathcal{E}' \supset \mathcal{E}$ if $r_1 \notin \mathcal{E}'$ then the cores of the surgery tori form disjoint geodesics in $\mathcal{M}(r_1, ..., r_n)$ with small length and these are the shortest geodesics in $\mathcal{M}(r_1, ..., r_n)$

so, for example, if K c 5' is a knot st. 5'-K is hyperbolic, then 5% (r) is hyperbolic for all but finitely many r call r exceptional if Sk (r) not hyperbolic

let M hyperbolic 3-manifold with one torus boundary component

Lackenby-Meyerhoff 2015: then M has at most 10 exceptional slopes Agol 2010: there are only finitely many such M with 9 or more exeptional slopes